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Abstract  

 

There is substantial interest in restoring tidal wetlands because of their high rates of long-term 

soil carbon sequestration and other valued ecosystem services. However, these wetlands are 

sometimes net sources of greenhouse gases (GHG) that may offset their climate cooling 

potential. GHG fluxes vary widely within and across tidal wetlands, so it is essential to better 

understand how key environmental drivers, and importantly, land management, affect GHG 

dynamics. We measured methane (CH4) and nitrous oxide (N2O) fluxes at 26 reference and 

restored tidal wetland sites and eight non-tidal pastures (mostly diked former tidal wetlands) in 

five estuaries in the Pacific Northwest (PNW), USA. We measured fluxes 7-8 times over one 

year to assess the effects of environmental drivers, wetland type, and land management on CH4 

and N2O fluxes. Linear relationships between CH4 fluxes and environmental drivers were poor, 

but a machine-learning approach with boosted regression trees provided strong predictability for 

fluxes based upon wetland surface elevation, water-table level, and salinity. Less important 

variables were groundwater pH, wetland type, and temperature. Under oligohaline conditions, 

CH4 fluxes were variable and sometimes very high, but fluxes at salinities above 2 ppt were 

relatively low on an annual basis. Fluxes of CH4 were higher in restored tidal marshes and wet 

pastures than in reference tidal marshes, tidal swamps, and dry pastures. The N2O model had 

lower predictive power than the CH4 model, with wetland type as the most important factor, 

though N2O fluxes across all wetland types were low (median of zero). Our results indicate that 

estuarine hydrologic gradients are a key driver of CH4 fluxes and that wetland land use impacts 

on CH4 fluxes are largely mediated by their varying environmental conditions. In the PNW, 

estuarine wetlands that have low salinity, lower elevation, and have high water tables are more 
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likely to have increased CH4 emissions that may offset their carbon sequestration benefits until 

they gain enough elevation through accretion. This study also provides a transferrable modeling 

approach to predict the consequences of coastal wetland management to GHG fluxes using 

monitoring data from a limited set of key environmental drivers.  
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INTRODUCTION 

 

Global efforts to find natural adaptive solutions to help mitigate anthropogenic climate 

change have increased attention on coastal tidal wetlands, including emergent marshes, seagrass 

meadows, mangrove forests, and temperate tidal swamps, because of their ability to remove and 

store carbon dioxide effectively (McLeod et al., 2011). These “blue carbon” ecosystems are 

highly efficient, on a per-unit-area rate basis, at sequestering organic carbon derived from both in 

situ photosynthetic production and allochthonous carbon inputs from coastal watersheds 

(Chmura et al., 2003; Hopkinson et al., 2012; Peck et al., 2020; Kauffman et al., 2020; Poppe 

and Rybczyk, 2021). Interest in blue carbon has led to growing incentives for governments and 

land managers to conserve and restore tidal wetlands over the past decade (Kelleway et al., 

2020), actions which have the added benefits of increasing habitat for fish and wildlife, 

providing flood protection, and sustaining the important cultural and biodiversity services of 

estuaries (David et al., 2014; Himes-Cornell et al., 2018).  

 Although blue carbon ecosystems have a high capacity to sequester organic carbon, they 

also can emit the powerful greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O), 

potentially offsetting their cooling potential. Saline and brackish tidal wetlands are estimated to 

emit globally 0.76 Tg CH4 yr-1 with much smaller emissions of 6.3 Gg N2O yr-1, but these GHG 

emissions are offset by soil carbon sequestration, so there is an estimated global net removal of 

538 Tg CO2 eq. yr-1 using a 20-yr global warming potential (Rosentreter et al., 2023). However, 

the range of GHG emissions observed both globally and regionally is large because CH4 and 

N2O production in wetlands is affected by a number of drivers conferring high heterogeneity in 

time and space (Hemes et al., 2018; Rosentreter et al., 2021; Capocci and Vargas, 2022). Global 
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wetland CH4 emissions also may have increased over the last two decades due to feedback from 

increasing air temperatures and precipitation (Zhang et al., 2023). It is important to understand 

how coastal land management affects GHG fluxes in estuarine wetlands because perceived 

positive climate forcing benefits may be a motivating factor in new restoration projects. 

Understanding how CH4 and N2O fluxes differ along key estuarine environmental gradients and 

among different management histories is crucial for determining to what extent these ecosystems 

can contribute to a suite of natural climate solutions that help mitigate global warming. 

Variability in estuarine biogeophysical conditions influences CH4 fluxes in tidal 

wetlands, with water-table level, salinity, and temperature being major factors (Tan et al., 2020; 

Rosentreter et al., 2021; Schultz et al., 2023). Low salinity wetlands emit higher and more 

variable levels of CH4 (Poffenbarger et al., 2011; Sanders-DeMott et al., 2022), and 18 ppt 

(about half the concentration of seawater) is often used as a threshold between high- and low-

emission tidal wetlands (IPCC 2014). Controls on CH4 fluxes at lower salinities are more 

complex and involve multiple environmental drivers that may be non-linear and interact with one 

another (Schultz et al., 2023). New modeling techniques such as machine-learning approaches 

that account for non-linear and interactive effects of multiple environmental drivers can help 

researchers better predict GHG fluxes when there are potentially complex controls operating at 

multiple spatial and temporal scales (Yuan et al., 2022; Schultz et al., 2023). 

Two recent meta-analyses found disparate results regarding the effects of coastal wetland 

conversion to other land uses, and subsequent restoration, on CH4 and N2O fluxes (O’Connor et 

al., 2020; Tan et al., 2020). This emphasizes the need for further studies. Along the U.S. west 

coast, many tidal wetlands were historically diked, drained, and converted to agricultural uses, 

resulting in high levels of wetland loss and fragmentation of estuarine landscapes (Brophy et al., 



7 
 

2019; Marcoe and Pilson, 2017). To reverse loss and enhance estuarine function, efforts to 

restore tidal wetlands, particularly emergent marshes, are increasing all along the U.S. west 

coast. From a blue carbon perspective, it is crucial to understand how land management practices 

such as diking and subsequent draining and seasonal drying of tidal wetland soils may contribute 

to changes in CH4 and N2O production to inform accurate assessment of the overall climate 

effects of wetland conservation and restoration. Moreover, it is necessary to determine how GHG 

fluxes may change in restored sites over longer time scales as site conditions such as hydrology 

evolve. However, very little data exists on GHG fluxes in natural, disturbed, or restored tidal 

wetlands in the Pacific Northwest (PNW) region of the U.S. (Diefenderfer et al., 2018a; 

RoyChowdhury et al., 2018; Schulz et al., 2023).  

We conducted a regional assessment of CH4 and N2O fluxes from tidal wetlands across a 

range of land management regimes and wetland types in the PNW using a machine-learning 

approach to examine the relative impacts of environmental drivers on fluxes and to predict 

annual fluxes at the site level. Our study builds on more localized research in the region using a 

similar approach (Schultz et al., 2023). We measured GHG fluxes in least-disturbed reference 

tidal marshes and swamps, restored tidal marshes, and non-tidal pastures (mainly former tidal 

wetlands historically converted to agricultural land uses). At the same sites, we also measured 

environmental factors likely to affect fluxes, including water-table level, groundwater salinity 

and pH, soil and air temperature, and plant biomass and species composition. This study tested 

the following hypotheses: (1) CH4 fluxes increase with greater waterlogging, lower salinity, and 

higher soil and air temperatures. (2) CH4 trends related to environmental drivers are non-linear 

and interactive. (3) Plant biomass and community composition affect GHG fluxes. (4) CH4 

fluxes differ among estuarine wetland types and land management regimes, which can largely be 
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explained by their effects on ecosystem drivers of these fluxes. (5) N2O fluxes are low overall 

but are somewhat higher in former tidal wetlands now used for agriculture. By incorporating a 

large regional dataset into a machine learning model, we developed a framework that can be 

applied to estimating fluxes from other estuarine wetlands in the region where flux data are not 

available. 

 

MATERIALS AND METHODS 

 

Study sites 

 

We measured GHG fluxes at 34 sites in estuaries on the Oregon and Washington coasts 

7-8 times from spring 2021 to spring 2022, which differed in dominant vegetation, disturbance 

status, tide range, and salinity. Sites were located in the Coos Estuary (OR), Columbia River 

Estuary (OR/WA), Grays Harbor Estuary (WA), Skagit Estuary (WA), and Padilla Bay (WA) 

(Fig. 1A; Appendix 1: Table S1). Sites included 12 reference marshes, five forested tidal 

swamps, nine restored marshes, and eight non-tidal pastures. The nine restored sites ranged in 

age from about 5 to 25 years at the time of sampling, and were mostly dike breaches or removals 

to restore tidal connectivity. Tidal sites occurred across a broad continuum of salinity from tidal 

freshwater marshes and swamps in the Columbia River and Skagit estuaries (0-0.5 ppt) to 

oligohaline (0.5-5 ppt), mesohaline (5-18 ppt), and polyhaline conditions (18-30 ppt) in other 

estuaries. Marshes were dominated by a mixture of mostly perennial grasses, sedges, and forbs, 

while tidal swamps were dominated by trees (mainly Picea sitchensis) with woody and 

herbaceous understories. Pastures were non-tidal sites dominated by graminoid emergent 
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vegetation and included six diked former tidal wetlands (two were being agriculturally managed 

and four were not at the time of sampling) and two in a coastal floodplain adjacent to estuarine 

wetlands but at elevations mostly above tidal influence. We classified three pastures as “wet 

pastures” (median water table 25 cm below the surface or higher for at least five months out of 

the year) and the other five sites as “dry pastures”. We combined wetland types and land 

management classes into a single class termed “wetland type” for brevity. 

 

Gas sampling 

 

At each site we inserted six PVC collars (40 cm diameter, 16 cm height) about 9 cm into 

the ground for the duration of the study. Drainage ports were inserted when necessary to 

facilitate drainage. Collars were situated at both ends of 2.4 m long wood boardwalks which 

were used to minimize sediment disturbance near the collars during sampling (Fig. 1B). At most 

sites, the three boardwalks were arranged along a short transect perpendicular to a major tidal 

slough (or ditch or stream in the case of non-tidal pastures) in order to capture gradients within 

sites due to differences in elevation, hydrology, and plant composition. At tidal swamp sites, 

because of the complex physical structure caused by tree roots and stumps, we installed the 

boardwalks in relatively flat areas. 

At the time of sampling, we fitted collars with one or more 0.04 m3 chamber tops 

(multiple top sections were stacked to accommodate tall vegetation) constructed from a PVC 

frame and 6 mil (i.e., 0.152 mm thickness) translucent greenhouse plastic affixed with clear 

adhesive tape to form an airtight seal. We drilled an intake port at the top and a return port at the 

bottom, installed with Swagelok fixtures, and connected to tubing which ran to the gas analyzer 
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creating a closed loop system. Given the large number of widely dispersed sites, two teams were 

responsible for gas measurements, and a comparison of the two instruments gave similar slopes 

for CH4 fluxes. We sampled the southern estuaries (Coos Bay and Columbia River) with a 

portable Fourier-transform infrared (FTIR) gas analyzer, Gasmet DX4040 (Vantaa, Finland), and 

the northern estuaries (Grays Harbor, Skagit, Padilla Bay) with an Optical Feedback – Cavity 

Enhanced Absorption Spectroscopy (OF-CEAS) gas analyzer, LI-7810 (LI-COR, Lincoln, NE, 

USA) (Fig. 1B). Only the Gasmet allowed for N2O flux measurements. The Gasmet was out of 

service for several months, during which time we used the LI-7810 on all sites. Since N2O 

sampling was limited to sites and months when the Gasmet was operational, the data set has 

about a third as many measurements as CH4. 

Battery operated fans placed inside the chambers mixed the headspace. We conducted 

light and dark measurements sequentially at each chamber to determine if light availability 

affected fluxes. We determined dark fluxes by placing black plastic sheeting over the chamber 

tops and measuring gas concentrations for approximately 6 min. We then removed chamber tops, 

allowed gas concentrations to return to ambient levels, and replaced chamber tops for light 

measurements for another 6 min. The LI-COR sampled continuously at about 1 hz and the 

Gasmet samples were averaged every 30 s.  
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FIG. 1. (A) Map of the five study estuaries in Oregon and Washington, USA, and (B) example 

collar, boardwalk and chamber setup at a non-tidal pasture site in Padilla Bay. Photo by M. 

McKeon. Map by C. Cornu. 

 

We determined the linear slopes of the change in GHG concentrations during light and 

dark periods to calculate flux rates. When linear slopes were non-significant (R2 < 0.33 and P > 

0.05), we concluded that fluxes were below the detection limit. Because the LI-COR instrument 

collected data at a much higher frequency than the Gasmet analyzer, almost all slopes from the 

former had a significant p-value, so the strength of the relationship (R2) was the primary 

determinant of linearity with that instrument. 

 

Environmental data 
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We installed one shallow groundwater well per pair of collars (3 per site) to obtain spot 

measurements of water-table level, water temperature, salinity, and pH at each gas sampling. 

These wells consisted of 1 m long, 3 cm diameter PVC pipes inserted halfway into the ground 

with drilled holes for the bottom 40 cm of the well to allow groundwater flow. At each GHG 

sampling event, we made measurements inside the wells with YSI Pro 30 conductivity meters 

(YSI Incorporated, Yellow Springs, OH) for salinity and Extech PH220 or Apera PH60 sensors 

for pH. Water-table measurements were individualized in the two chambers per boardwalk by 

measuring their respective elevations relative to the main groundwater well (see below). 

We also established a single deeper (1.0-1.5 m) groundwater well at each site, typically 

located 15-20 m away from a major tidal creek or channel but relatively close to each transect, to 

obtain a detailed time series of groundwater conditions. These wells were constructed from 5 cm 

diameter PVC pipe and well screen. Inside each well we added a Hobo U20 or U20L (Onset 

Corporation, Bourne, MA) water-level sensor, suspended near the bottom of the well at a known 

distance below ground to record water-table level every 30 min. We also suspended an Odyssey 

conductivity and temperature logger (Dataflow Systems Ltd., Christchurch, NZ) about 25 cm 

below the ground surface to record salinity and temperature in the root zone every 30 min. In 

addition, we obtained a time series of soil temperature at each site by burying a Hobo pendant 

UA-001-08 logger 5 cm below ground and recording values every hour. During the >1 yr time 

series of soil temperature and groundwater conditions measured at each site, we periodically 

downloaded and cleaned loggers. We also checked for logger accuracy under controlled 

conditions before their use in the field, and verified logger salinity and temperature values with 

in situ checks performed with a YSI Pro30 conductivity probe. In a few freshwater sites we did 
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not deploy Odyssey loggers in the groundwater wells, but did record salinity values with 

intermittent YSI Pro30 measurements. 

 

Elevation 

 

We determined the elevation of the wetland surface at each GHG collar and groundwater 

well using real-time kinematic global navigation satellite system (RTK-GNSS) methods with 

Trimble R8 and R12 rovers (Trimble, Inc., Westminster, CO) connected to real-time correction 

networks (ORGN in Oregon and southwest Washington and WSRN in the rest of Washington). 

For sites with significant tree cover, we determined elevations using laser leveling from nearby 

temporary benchmarks measured with RTK-GNSS. We obtained elevations in the North 

American Vertical Datum of 1988 (NAVD88) and converted values to an elevation scaled to 

local tidal datums using z* = (z-MTL)/(MHHW-MTL), where z is the measured NAVD88 

elevation, and mean tide level (MTL) and mean higher high water (MHHW) are local tidal 

datums measured in NAVD88 (Swanson et al., 2014). For interpretation, z* = 0 indicates a 

wetland at mean tide level, inundated about 50% of the time, and z* = 1.0 is a wetland at local 

mean higher high water and is inundated much less frequently.   

To compute z*, we obtained tidal datums (1985-2001 epoch) by processing time series of 

tidal channel water level collected near those sites with our own channel water level loggers, 

National Estuarine Research Reserve System water level stations (https://cdmo.baruch.sc.edu/), 

or NOAA tidal stations. We used VDATUM 3.6.1 and 4.1.2 for MTL estimates where needed. 

We processed water level time series using methodologies described in NOAA (2003).  

 

https://cdmo.baruch.sc.edu/
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     Vegetation 

 

For sites in the Coos and Columbia River estuaries, we obtained plant cover and height 

data during each GHG sampling event inside the chambers to quantify biomass and species 

composition. We visually determined percent cover of all species with at least 5% cover and 

measured height of up to four random shoots of each species. From these measurements we 

determined a “biomass index” by summing the product of average height and cover for all 

species.  

 

Statistical analysis 

 

 For all statistical analyses we used R (v. 4.0.2 and 4.0.3, R Core Team 2020). We log-

transformed CH4 and N2O data after adding a near zero minimal constant to all values to remove 

negative values. We compared light and dark fluxes of the two gases with paired t-tests. Because 

these indicated little difference, we averaged light and dark flux data for all subsequent analyses.  

For the full dataset (all wetland types pooled), we tested for relationships between major 

environmental drivers and log-transformed CH4 fluxes with linear regression. We used main well 

logger time series data as needed to fill in temperature and salinity data gaps in groundwater 

measures in the shallower wells at the time of gas sampling (for example when they were dry). 

Additionally, we explored whether environmental drivers sampled at each pair of chambers 

(such as salinity) were limiting factors (sensu Cade and Noon, 2003) on maximum CH4 fluxes 

(estimated as the 0.95 quantile of the data distribution) with quantile linear regression using the 

R package “quantreg” (Koenker 2005).   
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 A prior GHG flux study in two Oregon estuaries examined a number of different 

machine-learning techniques and determined that boosted regression trees (BRT) provided the 

best predictive power when multivariate environmental drivers are measured (Schulz et al., 

2023). Therefore, we developed BRT models to analyze the interactive and non-linear effects of 

environmental drivers and wetland type on the full datasets of CH4 and N2O fluxes using the 

“gbm” package (Greenwell et al., 2022) and the “caret” package (Kuhn, 2021) for model 

training. 

Boosted regression tree analysis is a machine learning method that sequentially combines 

multiple decision trees to develop a predictive model based on a matrix of continuous and/or 

categorical independent variables. This is done by training each subsequent tree by predicting the 

residual errors of the previous trees. The process of training multiple trees and combining their 

predictions is called "boosting." By boosting multiple decision trees in this way, BRT models 

can capture complex relationships and make accurate predictions even on noisy, nonlinear data. 

BRT models also assess the relative importance of independent variables in determining the total 

variance in the model. To visualize model outputs we used Individual Conditional Expectation 

(ICE) curves, which are an expansion of Partial Dependence Plots (PDPs). While PDPs show the 

average marginal effect on the response variable, ICE curves depict the change in the predicted 

response variable for each observation as each predictor variable varies. The centered ICE makes 

clearer any pronounced heterogeneity in our results.  

After developing the BRT model for CH4 based upon the point measures of fluxes and 

their paired environmental data, we implemented a slightly simplified version of the explanatory 

model in the predictive mode to estimate annual gas fluxes at the site level (n=34). The 

environmental data we used to estimate annual fluxes were the one-year time series data 
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collected at each site at 30 minute intervals including water-table level, groundwater salinity, 

groundwater temperature from continuous logging in the main wells, soil temperature from 

continuous logging at the main well, air temperature from near-by weather stations, and one-time 

points measurements of site elevation at the larger groundwater well, and the five categories of 

wetland class. We reran BRT models without groundwater pH in annual predictions since we did 

not have continuous site pH data over the study period (parameters only changed slightly). 

Predicted CH4 fluxes per 30 min intervals were summed over one year to give an annual total per 

site. We chose not to estimate annual N2O fluxes because of the relatively poor predictive power 

of the BRT model and their very low values (see below). 

To test for differences across the five wetland types examined in this study (reference 

marsh, reference swamp, restored marsh, wet pastures, and dry pastures), we used parametric 

Welch’s one-way ANOVA and Games-Howell post hoc tests. We also reran this test after 

subdividing the flux measurements into wet (October-May) and dry (June-September) seasons. 

For sites in the Coos and Columbia River estuaries, we examined relationships between 

GHG fluxes and plant metrics. We tested for relationships between GHG fluxes and the biomass 

index using linear regression. To examine potential linkages between plant community structure 

and GHG fluxes, we subset plant cover data inside the GHG chambers collected in the summer 

season (June-Aug 2021) and applied 2-dimensional non-metric multidimensional scaling 

(NMDS) to separate chambers by species composition using the R package “vegan” (v.2.6-2; 

Oksanen et al., 2022) and a Bray-Curtis dissimilarity matrix based on Wisconsin double-

transformed cover data (Oksanen, 2015). A convergent solution was obtained after 20 iterations 

performed with function “MetaMDS” and step-across similarities because many chambers had 

little overlap in species composition. On the NMDS plots, we overlaid centroids of selected plant 
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species as well as contours of CH4 and N2O fluxes using function “ordisurf” in “vegan,” which 

relates the dependent variable (GHG flux) to species composition in the ordination space with a 

general additive model.  

  

RESULTS 

 

Environmental drivers of CH4 fluxes 

 

There was no significant difference in CH4 fluxes between light and dark conditions (t = -

0.03, df = 1338, P = 0.98). Fluxes ranged from negative (uptake or consumption) to positive 

(emissions) values, with 16% of values showing CH4 uptake or consumption, 16% showing non-

detectable fluxes (treated as zeros), and 68% of values showing emissions to the atmosphere.  

Linear relationships between CH4 fluxes and key environmental drivers were weak due to 

substantial variability (low R2) although often statistically significant (low P-values) within the 

large dataset (Table 1). Groundwater salinity, pH, and wetland elevation had negative 

relationships with CH4 flux, while water-table level and groundwater temperature had positive 

relationships with CH4 flux (Table 1; Appendix S1: Fig. S1). The upper bounds of the CH4 

distribution with individual environmental drivers (e.g., an estimate of maximum short-term 

fluxes) similarly were positively or negatively related to these drivers indicating that several 

abiotic factors may have roles as limiting factors for CH4.  
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TABLE 1. Summary of linear relationships between point measurements of CH4 fluxes and 

individual environmental drivers in PNW tidal wetlands shown in Appendix S1: Fig. S1. 

 

Environmental 
driver 

Model fits to fluxes Model fits to maximum 
fluxes 

Slope R2 P Slope P 

Salinity -0.007 0.018 <0.001 -0.039 <0.001 
Water-table level 0.277 0.060 <0.001 1.206 <0.001 
Wetland elevation -0.120 0.020 <0.001 -1.160 <0.001 
Groundwater pH -0.103 0.018 <0.001 -0.628 <0.001 
Groundwater temp 0.011 0.006 <0.01 0.052 0.13 
Soil temperature 0.008 0.001 0.12 0.036 0.04 
Air temperature -0.002 -0.0002 0.42 -0.006 0.62 
 Notes: We fit fluxes with least-squares regression as well as maximum fluxes (0.95 
quantile of the distribution) using quantile regression. 
 

We tuned the CH4 BRT model using 2,432 trees with an interaction depth of 16 and a 

learning rate of 0.01, and 11 as the minimum number of observations per node. The adjusted R2 

between the model trained with the full data set against the full data set was 0.86, indicating that 

it effectively captured the multi-factor, nonlinear controls over CH4 fluxes. Three environmental 

drivers had a relatively strong influence on CH4 fluxes in the BRT model, with wetland elevation 

accounting for 21.0% of relative influence, followed by salinity (18.3%), and water-table level 

(16.0%) (Fig. 2; Appendix S1: Table S2). Wetland type, pH, and air, soil and groundwater 

temperature all had smaller relative effects on CH4 fluxes in the model (each < 15%). 
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FIG. 2. The relative influence of eight environmental variables on point measurements of CH4 

fluxes in the BRT model for PNW coastal wetlands. The adjusted R2 between modeled and 

measured fluxes was 0.86. 
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FIG. 3. Partial (left), ICE (center) and ICE-centered (right) plots of point measurements of CH4 

fluxes and the three most influential variables in the BRT model. Loess-smoothed lines are in 

blue (left) or red (center, right). Rugs on the x-axis denote 10% quantiles of data. Partial plots 

show the influence of single variables on fluxes with other variables held constant. 

  

Wetland elevation, water-table level, and salinity—the three most important variables in 

the BRT model—had non-linear relationships with CH4 fluxes when other variables were held 

constant (Fig. 3). The highest positive flux values were observed at wetland elevations between 

about z* = 0.5 and z* = 0.8 (elevations somewhat below local MHHW). Furthermore, there was 
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a dramatic decrease in CH4 flux at about z* = 1.4, corresponding to sites that were very 

infrequently inundated or not at all. Methane fluxes increased with higher water-table levels up 

to and above the surface (e.g., surface ponding), while deeper water-table levels (> 0.5 m below 

the surface) were associated with lower CH4 fluxes. Methane fluxes declined non-linearly but 

monotonically with salinity, and when other variables were held constant, the lowest fluxes 

occurred at groundwater salinities above 15 ppt. 

 

CH4 fluxes and plant biomass and composition 

 

Total plant biomass inside the chambers, estimated as percent cover times height, was 

positively but only weakly linearly correlated with CH4 fluxes (r2 = 0.08, P < 0.001; Fig. 4). In 

the NMDS plot of species composition with general additive models to visualize change in 

summer-time CH4 fluxes across the two-dimensional ordination, the highest CH4 fluxes were 

observed in plots that tended to have a greater relative abundance of fresher species such as  

Phalaris arundinacea (reed canarygrass; a regionally invasive grass) and Sagittaria latifolia 

(wapato; a native forb) (Fig. 5). In contrast, chambers dominated by regionally common native 

halophytic species such as Salicornia pacifica (pickleweed), Distichlis spicata (salt grass), and 

Jaumea carnosa (fleshy jaumea) had little to no CH4 emissions or CH4 uptake.  
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FIG. 4. Relationship between plant biomass index and point measurements of CH4 fluxes (log10 

scale). Data are from only the Coos and Columbia River estuaries, but include all sampling dates 

over the course of a year.  
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FIG. 5. Relationship between plant species composition in two dimensional NMDS space and 

point measurements of CH4 fluxes during summer sampling in the Coos and Columbia River 

estuaries. Individual chambers are indicated by points. The centroids of common and indicator 

species are given by three-letter codes as in Appendix S1: Table S3. Modeled CH4 fluxes across 

the species compositional space are indicated by color contours. 

 

Wetland type effects on environmental drivers and point-measurements of CH4 fluxes 

 

Large differences in environmental drivers among wetland types (Fig. 6) largely 

subsumed the effect of type in the CH4 BRT model (wetland type relative influence = 12.1%, 

Fig. 2). Reference marshes had the highest groundwater salinity followed by restored marshes 

and then other wetland classes. Restored marshes had the highest water-table levels, followed by 
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reference marshes and wet pastures. Wetland elevations were significantly higher in tidal 

swamps than in reference marshes, restored marshes, and wet pastures (while dry pastures were 

highly variable since they included three subsided former tidal wetlands and two pastures above 

tidal influence). Air, soil, and water temperature largely reflect seasonality, so differences among 

sites were small, with tidal swamps being slightly cooler, and wet pastures slightly warmer 

(results not shown). Groundwater pH average and median across wetland type remained 

relatively consistent between 6.2 and 6.4. 
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FIG. 6. Boxplots of differences in water table (A), elevation (B), and groundwater salinity (C) by 

wetland type. Median = solid lines, mean = triangles. Unshared letters denote significant 

differences (Welch’s ANOVA, Games-Howell Tests). 

 

When examined in isolation, CH4 fluxes integrated over the duration of the study varied 

substantially among wetland types (n = 1412, W = 47.4, df = 4, P < 0.001; Fig. 7A; Appendix 

S1: Table S4). The highest fluxes occurred in restored marshes and wet pastures. There was 

considerable variation in values within wetland classes; for example, in wet pasture sites, fluxes 

ranged from -31 to ~200,000 nmol m-2 min-1. Average fluxes were slightly higher in the dry 

season (which is also warmer), except in pasture sites. Wet pasture sites had the highest CH4 

emissions in the study, whereas dry pasture sites had the highest uptake value recorded 

(Appendix S1: Table S4). Restored marshes had maximum fluxes over 10 times higher than 

those in both reference tidal swamps and marshes. 

During the wet season (October - May), CH4 fluxes were significantly higher in restored 

marshes and wet pastures than in reference marshes and swamps, and significantly lower in dry 

pastures (n = 983, W = 28.4, df = 4, P < 0.001; Fig. 7B). This pattern was similar for dry season 

conditions (June - September) except that wet pasture fluxes were highly variable and not 

different from any of the tidal wetland classes (n = 429, W = 47.8, df = 4, P < 0.001; Fig. 7C). 
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FIG. 7. Boxplots of point measurements of CH4 flux by wetland type in all seasons (A) and 

separated into wet (B) and dry (C) seasons in PNW estuaries (log10 scale). Median = solid lines 

in the box plots, mean = triangles. Wetland classes not sharing the same lowercase letters were 

significantly different.  

 

Estimated annual CH4 fluxes 

 

Using the output from the BRT model and time series data, we estimated annual CH4 

fluxes over 2021-2022 (Table 2). To increase representation within our geographic study area, 

we included annual CH4 fluxes from three additional reference sites and six additional restored 

sites in a large recently restored emergent marsh in Tillamook Bay, Oregon reported by an earlier 

study that used a similar BRT modeling approach (Schulz et al., 2023). Annual fluxes are similar 
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to those for point measurements, showing the highest annual CH4 fluxes in restored marshes and 

wet pastures.  

 

TABLE 2. Annual CH4 fluxes for wetland classes predicted from the BRT model. Included are 

all sites from this study, and three additional reference marshes and six additional restored 

marshes in Tillamook Bay, OR reported by Schulz et al. (2023).  

 
Predicted CH4 flux (g CH4 m-2 yr-1) 

Wetland Class N Mean SE Median Max Min 
Reference Swamp 5 0.56 a 0.15 0.58 0.96 0.08 
Reference Marsh 15 4.44 b 2.18 2.03 34.61 0.75 
Restored Marsh 15 36.30 b 27.77 3.94 420.03 0.46 
Wet Pasture 3 37.25 ab 34.61 3.60 106.46 1.70 
Dry Pasture 5 0.21 ab 0.84 0.14 3.26 -1.39 
 Notes: Unshared letters in the mean column denote significant differences (Welch’s ANOVA, Games 
Howell tests). 
 

 We also examined annual fluxes relative to average annual salinity and wetland 

elevation. Similar to the point measurements (Appendix S1: Fig. S1), there was wide variability 

in annual CH4 fluxes at salinities < 3 ppt, but a much narrower range of fluxes at higher salinities 

(Fig. 8A). The result of this variability was that salinity classes were not significantly different 

whether fresh and oligohaline classes were separated or combined (Welch’s ANOVA p > 0.60, 

Table 3). Annual and point measurements of fluxes by wetland and salinity classes are given in 

Appendix S1: Tables S4 and S5. Higher annual CH4 fluxes (> 10 g CH4 m-2 yr-1) were only 

observed in lower elevation wetlands, where z* < 0.75 (Fig. 8B). 
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FIG. 8. Log10 annual CH4 flux (plus a constant of 1.393) relative to (A) average annual 

groundwater salinity and (B) standardized tidal elevation (z*) from 34 sites in this study and nine 

sites in Schulz et al. (2023). Wetland classes are shown by different colors and shapes. The insets 

show non-logged results without the added constant. 

 

TABLE 3. Annual CH4 fluxes for salinity classes predicted from the BRT model. Included are 

all sites from this study and two oligohaline and seven mesohaline sites in Oregon from Schulz et 

al. (2023). 

 
Predicted CH4 flux (g CH4 m-2 yr-1) 

Salinity Class N Mean SE Median Max Min 
Fresh  11 19.45 11.01 0.46 106.46 -1.39 
Oligohaline 10 44.27 41.75 2.73 420.03 0.72 
Mesohaline 18 2.86 0.54 2.20 9.61 0.46 
Polyhaline 4 4.67 1.69 4.28 8.36 1.74 

 

 

Environmental drivers of nitrous oxide fluxes 



30 
 

 

As with CH4 fluxes, there was no significant difference in N2O fluxes under dark versus 

light conditions (t = 1.31, df = 445, P = 0.19), and therefore we averaged light and dark fluxes 

for each chamber measurement. The majority of flux measurements (89.5%) were below the 

detection limit (treated as zeros), while 8.4% were emissions and 2.1% were uptake. 

Nitrous oxide fluxes were only significantly linearly related to water-table level but with 

low predictive power (R2 = 0.030, Appendix S1: Table S6). In the BRT model, the 

environmental drivers explained a modest amount of the variation in measured fluxes (adjusted 

R2 = 0.25). Wetland type was the strongest predictor of N2O fluxes (22.0%) while other factors 

had lower relative importance, including water-table level (19.3%), wetland elevation (15.9%), 

and salinity (12.2%) (Fig. 9; Appendix S1: Table S2).  

Total plant biomass was not significantly correlated with N2O fluxes (R2 = 0.007, p = 

0.32). When chambers were evaluated in terms of species composition, the highest N2O fluxes 

tended to be associated with Holcus lanatus (a non-native grass found in dry pastures) while the 

lowest fluxes were associated with native freshwater wetland species such as Carex obnupta, 

Oenanthe sarmentosa, and mosses (Appendix S1: Fig. S2).  

 



31 
 

 

FIG. 9. The relative influence of eight environmental variables on point measurements of N2O 

fluxes in the BRT model for PNW coastal wetlands. The adjusted R2 between the model and 

measured fluxes was 0.25. 

 

 

Wetland type effects on nitrous oxide fluxes 

 

Nitrous oxide fluxes differed significantly by wetland class (chi-squared = 32.876, df = 4, 

P < 0.001), although their medians were all zero (Appendix S1: Table S7). Dry pasture sites had 

higher fluxes than wet pastures, reference and restored marshes, and tidal swamps (post-hoc 

Dunn’s test). Least-disturbed marshes showed the greatest variability in fluxes with a maximum 

of 49  and a minimum of -60 nmol N2O m-2 min-1. Reference and restored marshes each showed 

approximately equal flux ranges above and below zero. 

      

DISCUSSION 
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Blue carbon ecosystems are recognized as potential contributors to natural climate 

solution initiatives to help mitigate anthropogenic emissions. Because GHG emissions, 

particularly CH4, may partially or completely offset the substantial carbon sequestration rates of 

tidal wetlands (Bridgham et al. 2006, Al-Haj and Fulweiler 2020, Rosentrenter et al. 2023), and 

could thus limit the viability of estuarine wetlands as a climate mitigation strategy (Silva et al., 

2022; Johannessen and Christian 2023), it is essential to quantify their effects on the potential 

climate benefits of conserving and restoring tidal wetlands. It also is important to predict the 

local and regional variability of GHG fluxes associated with those activities for the benefit of 

planners, land managers, policy makers, and others developing natural climate solution 

initiatives and prioritizing actions. 

To address these issues, we collected a large dataset of CH4 and N2O fluxes and 

associated environmental drivers across multiple wetland types and management regimes in 

estuarine wetlands in the PNW and compiled these new data with previously reported regional 

data for analysis. Our results identify the degree of soil saturation (as indicated by both water-

table level and wetland surface elevation) and groundwater salinity as major drivers of CH4 

fluxes. In turn, the effects of wetland type and management on GHG fluxes was largely mediated 

through their effects on these environmental drivers. 

Reflecting the current and legacy effects of land management on these environmental 

drivers, wet pastures and restored marshes (mostly previously diked pastures) had the highest 

CH4 fluxes, albeit with high variation among sites. In a more limited dataset from sites in only 

two estuaries, N2O fluxes were uniformly low across all wetland types and land management 

regimes with a median of zero, suggesting this is not an important GHG in many PNW estuarine 
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wetlands. We show that a machine learning approach can be used to estimate annual CH4 fluxes 

across heterogeneous landscapes if key environmental time series data are collected, and the 

regional models developed should allow extrapolation to other tidal wetland sites in the PNW. 

 

Environmental controls of CH4 fluxes 

 

Our results largely support our first hypothesis that CH4 fluxes increase with higher water 

tables, lower salinity, and higher soil and air temperatures. Additionally, the machine learning 

model supported our second hypothesis that these variables had non-linear and interactive 

effects. The environmental drivers individually had poor, even if often statistically significant, 

linear relationships with CH4 fluxes (Table 1, Appendix S1: Fig. S1). However, BRT modeling 

successfully captured these complex relationships, explaining 86% of the variation in CH4 

fluxes, which improves upon previous BRT modeling of CH4 fluxes in two Oregon estuaries 

using a somewhat different set of environmental driver variables (R2 = 0.77, Schulz et al., 

2023). The most important variables in the BRT model were related to hydrology, with wetland 

elevation relative to tide range (a proxy for surface inundation at tidal sites) and water-table level 

(important at both tidal and non-tidal sites) together explaining 37% of the variance (Fig. 2). 

Salinity was also important, explaining 18% of the variance. The partial plots from the BRT 

model demonstrated the nonlinear relationship of these variables with CH4 fluxes (Fig. 3). 

We expected variables relating to the degree of waterlogging to be important in 

explaining CH4 fluxes because methanogenesis is an obligatory anaerobic process and aerobic 

CH4 oxidation requires oxygen (Megonigal et al., 2004). Our results emphasize the importance 

of measuring site elevation normalized to tide range (z*) as a predictive variable for CH4 fluxes 
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in tidal wetlands, similar to the findings of Arias-Ortiz et al. (2024) in a synthesis of CH4 fluxes 

across tidal wetlands in the conterminous U.S.  In comparison, water-table level can be more 

problematic as a predictive variable for point chamber measurements of gas fluxes because these 

measurements are often taken during low tides and in daylight hours. We sampled all but the 

lowest elevation tidal sites randomly through the daylight hours, which should reduce the tidal 

bias in our analysis (potential daylight sampling biases are discussed below). The effect of water-

table level can also be complicated. For example, a PNW salt marsh chamber study with 

continuous diel sampling found that CH4 flux decreased during a storm surge, which was 

ascribed to hydrostatic pressure inhibiting diffusion and ebullition (i.e., bubble release) 

(Diefenderfer et al., 2018a). Similarly, eddy covariance studies often find pulses of CH4 flux 

around low tides, suggesting that the inhibiting effect of hydrostatic pressure may be a wide-

spread phenomenon (Ariaz-Ortiz et al., 2024). 

Salinity was the second most important variable in our CH4 BRT model (Fig. 2). It is 

recognized as an important predictor of CH4 fluxes in tidal wetlands because it is a surrogate for 

less easily measured sulfate concentrations (Poffenberger et al., 2011). Seawater has relatively 

high concentrations of sulfate, and sulfate-reducing bacteria in wetlands are competitively 

superior to methanogens for substrates (Megonigal et al., 2004). However, variability in this 

relationship can be high because of the local depletion of groundwater sulfate under saline 

conditions (Poffenberger et al., 2011). We found very high modeled annual fluxes of CH4 (i.e., > 

10 g CH4 m-2 yr-1) only at salinities less than about 2 ppt, albeit with substantial variation due to 

interacting factors such as water-table level and site elevation (Fig. 8). Both measured data 

(Appendix S1: Fig. S1) and the BRT model (Fig. 3) of instantaneous fluxes showed a slight spike 

in CH4 emissions at about 15 ppt salinity, but this result was not evident in the annual estimates.  
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Thus, we conclude that some, but far from all, fresh and oligohaline tidal wetlands in the PNW 

emit large amounts of CH4. Similar results have been found in syntheses over broader 

geographic areas (Poffenbarger et al., 2011; Windham-Myers et al., 2018; Al-Haj and Fulweiler, 

2020, Arias-Ortiz et al., 2024). We return to the management implications of these findings 

below. 

 The relatively low influence of temperature in our CH4 BRT model (Fig. 2) was 

surprising given the strong theoretical foundation for temperature effects on methanogenesis 

(Wu et al., 2021) that typically is translated into robust empirical relationships across wetland 

sites. For example, temperature was a dominant predictor of CH4 fluxes in both chamber studies 

and eddy covariance studies in tidal wetlands across the conterminous U.S. (Arias-Ortiz et al., 

2024). Apparently, in our dataset, the gradients of salinity and waterlogging among sites were 

more important than the relatively muted seasonal temperature changes along the PNW coast in 

controlling CH4 fluxes. However, in our previous study of CH4 fluxes in two Oregon estuaries, 

temperature was the most important predictor of CH4 fluxes in the BRT model (Schulz et al., 

2023). 

 

Plant controls of GHG fluxes 

 

 Our third hypothesis was that plant biomass and community composition would affect 

GHG fluxes. There was a weak, but significant, relationship between our plant biomass index on 

CH4 fluxes (Fig. 4), but not on N2O fluxes. Plant community composition was also related to 

both CH4 and N2O fluxes (Fig. 5, Appendix S1: Fig. S2). The highest CH4 fluxes tended to be 

associated with plots with greater abundance of Phalaris arundinacea and Sagittaria latifolia, 
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most likely reflecting the preference of these species for freshwater conditions (Borde et al., 

2020). P. arundinacea is a regionally common invasive grass which often dominates diked 

former tidal wetlands but also occurs in fresher tidal sites. S. latifolia is a native forb common in 

tidal freshwater wetlands in the Columbia River Estuary. Plants also can have direct effects on 

wetland CH4 fluxes by affecting CH4 transport from the soil to the atmosphere, diffusion of O2 

into the root zone, and by providing labile substrate (Laanbroek, 2010; Bridgham et al., 2013; 

Vroom et al., 2022). However, differences in species composition and their physiological traits 

may not drive GHG fluxes per se, since differences in plant composition in tidal wetlands often 

closely reflect the same major environmental drivers that affect CH4 fluxes such as inundation 

(elevation) and salinity (Watson and Byrne, 2009; Janousek and Folger, 2014). Other studies 

have similarly found that plant species composition can be an effective predictor of CH4 fluxes 

because of these indirect relationships between plant environmental tolerances and 

environmental drivers of CH4 flux (Bubier et al., 1995; Dias et al., 2010). Plants likely have the 

same range of effects on N2O fluxes, but plant effects are complicated by the multiple pathways 

of N2O production and consumption discussed below. Also, the low N2O fluxes measured in this 

study would tend to reduce any strong associations with plant biomass or composition. 

 We found no effect of light versus dark conditions on the fluxes of either CH4 or N2O, 

but this is not the equivalent of finding that there were no day versus night differences. For 

example, a previous study found that a PNW salt marsh had greater nighttime than daytime CH4 

fluxes (Diefenderfer et al., 2018a). We may have observed limited light versus dark differences 

in GHG fluxes because plant stomata typically close upon intermittent darkness after a lag period 

of tens of minutes (Lawson and Blatt, 2014), so our short incubation conditions may have had 

limited effects on plant gas transport. Furthermore, the wetland plants in our plots were primarily 
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herbaceous emergent species that occur in shallower water, where passive diffusion is the 

dominant mode of gas flow (Vroom et al., 2022). Diffusive gas flow through plants is limited 

mainly by root properties, and accordingly, there is typically no diel pattern in gas flux from 

these plants (Vroom et al., 2022). To our knowledge, only one taxon in our dataset, 

Schoenoplectus spp., has limited capability for pressurized gas flow where stomatal effects on 

gas fluxes would be expected to be more important (Vroom et al., 2022). Finally, there were also 

limited chamber effects on air or soil temperatures with our short incubation times, so typical 

diel temperature changes were not represented by our light versus dark incubation conditions.  

 

Wetland type and management effects on CH4 fluxes 

 

 We confirmed our fourth hypothesis that CH4 fluxes differ among estuarine wetland 

types and land management regimes, which can largely be explained by their effects on the 

ecosystem drivers of fluxes such as elevation and water-table level. Furthermore, our study 

indicated that the highest CH4 fluxes occurred in sites that are fresher and more waterlogged, 

such as non-tidal wet pastures and lower salinity restored sites (Fig. 8). Wetland type (which 

included management categories) was only the fourth most important factor in the CH4 BRT 

model, explaining 12.1% of the variation (Fig. 2). This relatively lower importance may be due 

to our finding that the important environmental drivers of CH4 flux (elevation, salinity, and 

water-table level) also differed substantially among wetland types (Fig. 6). Thus, wetland type 

and management have a large effect on the environmental factors that ultimately control CH4 

fluxes. A similar conclusion emerged from our previous study using BRT modeling in the PNW 

(Schultz et al., 2023). Temperature variables were less important in the BRT model in the current 
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study but would be expected to reflect diel and seasonal effects rather than site effects in a 

regional analysis with limited variability in climate regime (Appendix S1: Table S1). 

 Consistent with Schultz et al. (2023), we found that restored marshes and wet non-tidal 

pastures tended to have the highest average, median, and maximum CH4 fluxes, but there was 

wide variation within these wetland categories (Tables 2 and 3). Both restored marshes and wet 

pastures tended to be at lower elevations than reference sites, reflecting prior subsidence from 

drainage and soil compaction (Fig. 6). Restored marshes had high water-table levels and variable 

salinity, whereas wet pastures had variable water-table levels and low salinity. Accordingly, two 

of three low salinity restored marshes had very high annual CH4 fluxes (Fig. 8). Wet pastures 

were distinctly more waterlogged than dry pastures but they still had substantial variation in 

water tables (Fig. 6), which led to their large variation in CH4 fluxes. 

 

N2O fluxes 

 

We also confirmed our fifth hypothesis that N2O fluxes are low overall, but are somewhat 

higher in non-tidal pastures. The median N2O flux was zero in all wetland types, but average and 

maximum fluxes were somewhat higher in dry pasture sites (Appendix S1: Table S7). All 

wetland types also had a substantial number of significantly negative N2O fluxes. Our findings 

agree with other studies in the PNW and elsewhere that wetlands have low N2O fluxes unless 

they have substantial external nitrogen inputs (Mosemann-Valtierra, 2012; Diefenderfer et al., 

2018a; Schultz et al., 2023).  

Because the majority of our N2O measurements were below detection level, the BRT 

model did a relatively poor job of predicting drivers of fluxes (R2 = 0.25). This result is perhaps 
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not surprising given that N2O is produced by several processes within the nitrogen cycle, which 

have very different environmental controls, and different components of the denitrification 

process produce and consume N2O (Baggs, 2011; Butterbach-Bahl et al., 2013). Reflecting the 

inability of the BRT model to capture important environmental drivers of N2O fluxes, wetland 

type was the most important variable in the model (Fig. 9).  

These results are substantially similar to our previous study of GHG fluxes in two Oregon 

estuaries, where N2O fluxes had a median of zero and the BRT model only predicted 11% of the 

total variance (Schultz et al., 2023). In that study we found that former tidal wetlands in 

agricultural use and restored sites had the highest (but still low) N2O fluxes, suggesting that sites 

restored from an agricultural legacy may retain some legacy effects that promote slightly higher 

N2O fluxes.  

 

Synthesis and management considerations 

 

This study demonstrates that machine-learning techniques, combined with an appropriate 

set of environmental driver data, are a powerful tool for estimating GHG fluxes from tidal 

wetlands. This approach may provide an alternative to intensive chamber-based or flux tower 

measurements, which are labor intensive and expensive and, therefore may not be feasible for 

many tidal wetlands where assessment of GHG fluxes is needed to understand the radiative 

forcing of these ecosystems. Our results can be directly used in other tidal wetlands in the PNW. 

A similar approach in other regions would require collecting GHG flux and environmental driver 

data across the spectrum of wetland conditions in that region, or using existing data if available, 

and performing the appropriate machine-learning techniques.  
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In the absence of site-specific measurements, different salinity thresholds for estimating 

high versus low CH4 emissions from tidal wetlands have been proposed and are widely cited in 

the scientific literature. Poffenbarger et al. (2011) proposed a salinity threshold of 18 ppt above 

which “the methane emitted by a tidal marsh will be less (in CO2 equivalent units) than the 

carbon dioxide sequestered as soil carbon in most (95%) tidal marshes.” The IPCC Wetland 

2013 Supplement (2014) in their Tier 1 emission factors also proposed an 18 ppt salinity 

threshold, where sites > 18 ppt have no CH4 emissions and sites < 18 ppt have emissions of 19.4 

g CH4 m-2 yr-1. No rationale for this threshold is given in the IPCC Supplement, but Poffenbarger 

et al. (2011), among others, were cited as criteria. Arias-Ortiz et al. (2024) in a recent synthesis 

of tidal wetland CH4 fluxes from the conterminous U.S. (that included data from PNW tidal 

wetlands reported in Schultz et al. (2023)), suggested more refined IPCC Tier 1 CH4 emissions 

factors based upon salinity, elevation class, and average annual daily maximum air temperature 

(MATmax). Fresh/oligohaline sites and mesohaline sites in low and mid elevation classes and 

mesohaline sites with MATmax > 19 °C had consequential CH4 emissions (mean > 21.5 g CH4 

m-2 yr-1) . They suggested a cut-off of 21 + 2 ppt for consequential CH4 emissions in tidal 

wetlands (Arias-Ortiz et al., 2024).      However, this synthesis did not consider CH4 fluxes in the 

context of the radiative balance of a site in setting thresholds, in contrast to Poffenbarger et al. 

(2011). 

Our data suggest that the salinity threshold of IPCC (2014) would over- or underestimate 

emissions for many estuarine wetlands in the PNW depending on their salinity and tidal 

elevation. Our results are in general agreement with Arias-Ortiz et al. (2024). The MATmax of 

our sites range between 14 and 16 °C (Appendix S1: Table S1), putting our mesohaline sites in 

the lower tier of CH4 emissions according to Arias-Ortiz et al. (2024). Correspondingly, we 
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found emissions exceeding 10 g CH4 m-2 yr-1 only at salinities below 2-3 ppt (Fig. 8). Our 

fresh/oligohaline reference marshes and tidal forest sites were mostly high elevation sites relative 

to tides (Appendix S1: Table S1), and they also tended to have low CH4 emissions (reference 

swamp and reference marsh mean = 0.6 and 9.0 g CH4 m-2 yr-1, respectively, Appendix S1; Table 

S5). We address CH4 fluxes in the context of the radiative balance of tidal wetlands, similar to 

Poffenbarger et al. (2011), below. 

We plan to compare the effects of CH4 fluxes versus soil carbon sequestration on the 

radiative balance of many of these research sites in a future publication, but we can gain 

perspective here by comparing the average soil carbon accumulation rate for brackish and salt 

marshes on the Pacific coast of North America, 634 g CO2 eq m-2 yr-1 (2 SE = 337; Windham-

Myers et al., 2018). We found CH4 emissions at > 2 ppt salinity to range from 0.5 to 9.6 g CH4 

m-2 yr-1 (Fig. 8), which equates to 44 to 922 g CO2 eq m-2 yr-1 (2 SE = 86) using a 20-year 

sustained-flux global warming potential (SGWP) and from 21 to 432 g CO2 eq m-2 yr-1 (2 SE = 

40) with a 100 yr SGWP (Neubauer and Megonigal, 2015). Thus, this preliminary analysis 

suggests that the radiative balance of brackish and saline wetlands over 2 ppt in the PNW is 

generally positive (i.e., cooling) with a 100 yr SGWP but is more site-specific with a 20 yr 

SGWP. Nonetheless, the operative word above for the 100 yr SGWP is “generally” given the 

large variation in both soil carbon accumulation rates and CH4 fluxes. Thus, we suggest that CH4 

fluxes be considered in the climate balances of all PNW estuarine wetlands regardless of salinity 

when weighing the climate effects of management actions. Most PNW estuarine wetlands with a 

salinity > 2 ppt will have a net cooling radiative balance with a 100 yr SGWP, but the substantial 

effect of CH4 fluxes on the radiative balance is essential to consider if a quantitative analysis of 
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the climate benefits of management actions is a goal. Our results clearly show that IPCC default 

values for CH4 fluxes are inappropriate in PNW estuarine wetlands. 

Based upon the current analysis, we can make some preliminary best-management 

practice suggestions for the PNW. Given the very high CH4 fluxes we observed in some diked 

wet pasture sites, restoration focused on former tidal wetlands with a high water table may have 

the greatest impact on reducing GHG emissions, provided that restoration actions lower the 

water table. A beneficial change in emissions will be particularly large if the site converts from a 

freshwater or oligohaline state to a more saline condition upon restoration. We expect less 

climate benefit from restoring dry pastures, although many other ecosystem benefits will accrue 

in such sites. According to our findings, restored marshes are second only to wet pastures in CH4 

emissions, but we suggest that as sites evolve (Simenstad and Thom, 1996), they will have lower 

CH4 emissions as they approach greater functional recovery.  

Restored tidal wetland sites in the PNW are typically at a lower elevation than reference 

sites because of past subsidence (Frenkel and Morlan, 1991). If fill is used in the restoration 

process to create a higher wetland, then lower CH4 fluxes would be expected regardless of the 

site’s salinity. Excavation to restore tidal channel networks can result in material useful for 

creating higher elevation wetland areas within a site (Diefenderfer et al., 2018b), though such an 

approach presents permitting, ecological, and logistical challenges (Piercy et al., 2023). Effective 

tidal drainage from a restored site, such as the construction of a channel network of sufficient 

density, could also reduce CH4 fluxes by lowering the water table during low tide periods. Over 

time, lower elevation restored marshes accrete sediment and gain elevation, but it may take many 

decades for them to reach similar elevations to their reference counterparts (Thom, 1992; Cornu 

and Sadro, 2002). Typical rates of reference marsh accretion in the PNW range from 0.8 to 4.1 
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mm yr−1 across a wide range of fluvial suspended sediment load (Thom, 1992; Peck et al., 2020). 

Yet accretion rates up to an order of magnitude higher have been reported in some PNW 

estuaries, including in reference and restored sites in the Columbia Estuary (7-24 mm yr−1; 

Diefenderfer et al., 2008; Diefenderfer et al., 2021), suggesting that some restoration sites may 

be capable of reaching reference wetland elevations more quickly which may lead to reductions 

in CH4 emissions.  

Another recommended focus of restoration in PNW estuaries is tidal swamps, which 

were once widespread in the PNW with greater extent than marshes but are now almost 

completely lost (Brophy, 2019). Swamp restoration may have a substantial climate benefit in 

fresh-oligohaline conditions where restoration of marshes may yield less carbon accumulation 

and long-term storage. Forested tidal swamps tend to require a higher tidal elevation for 

persistence (Brophy et al., 2011), but the high carbon stocks in both tree biomass and soils in the 

relatively few extant tidal swamps (Kauffman et al., 2020) suggest they have among the highest 

capacities for total ecosystem carbon stocks accumulation globally of any blue carbon 

ecosystem. 
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TABLE S1. List of study sites, estuary, wetland type, geographic location, average annual groundwater 
salinity at the site (in ppt), elevation, and average annual daily maximum air temperature (°C, 
MAXtemp). Salinities were determined from groundwater logger time series unless otherwise noted, and 
MAXtemp is the 1991-2020 annual mean maximum temperature from the PRISM climate model 
(http://www.prism.oregonstate.edu). Elevations are site means (±SD) of tide-range standardized 
elevations (z*) at the six chamber locations per site (n = 4 at Milltown Island swamp).   
 

Site Estuary (state) Wetland type Latitude Longitude 
Salini-
ty Elevation 

MAX-
temp 

Wasson Creek upper pasture Coos (OR) Dry pasture 43.27173 -124.32409 0.1* 2.39 ± 0.04 15.6 
Wasson Creek lower pasture Coos (OR) Dry pasture 43.27067 -124.32174 0.1* 1.46 ± 0.09 15.8 
Winchester Creek swamp Coos (OR) Tidal swamp 43.26943 -124.32101 2.1 1.15 ± 0.04 15.8 
Fredrickson south marsh Coos (OR) Reference marsh 43.27239 -124.31885 10.7 1.12 ± 0.04 15.6 
Fredrickson restored marsh Coos (OR) Reference marsh 43.27481 -124.32033 16.1 0.99 ± 0.06 15.6 
Kunz restored marsh (high cell) Coos (OR) Restored marsh 43.28057 -124.31885 19.7 0.97 ± 0.05 15.6 
Kunz restored marsh (low cell) Coos (OR) Restored marsh 43.28171 -124.31957 22.9 0.46 ± 0.12 15.6 
Danger Pt marsh Coos (OR) Reference marsh 43.28335 -124.32342 9.0 0.82 ± 0.20 15.6 
Metcalf marsh Coos (OR) Reference marsh 43.33526 -124.32829 18.7 0.89 ± 0.15 14.9 
Millicoma marsh Coos (OR) Reference marsh 43.36810 -124.18532 16.9 1.02 ± 0.03 15.6 
Millicoma restored marsh Coos (OR) Restored marsh 43.36734 -124.18500 16.8 1.28 ± 0.03 15.6 
Sause pasture Coos (OR) Dry pasture 43.36835 -124.18409 1.1 0.59 ± 0.02 15.6 
Secret River marsh Columbia (WA) Reference marsh 46.30497 -123.69242 0.1* 0.41 ± 0.03 14.1 
Secret River swamp Columbia (WA) Tidal swamp 46.30766 -123.68992 0.1* 1.14 ± 0.11 14.1 
Alder Road pasture Columbia (WA) Wet pasture 46.31446 -123.68349 0.3* 0.51 ± 0.03 15.3 
Kandoll Farm marsh Columbia (WA) Restored marsh 46.32616 -123.65401 0.1* 0.52 ± 0.08 15.3 
Seal Slough swamp Columbia (WA) Tidal swamp 46.32647 -123.65992 0.1* 0.92 ± 0.08 15.3 
Mouth Lewis Clark Riv marsh Columbia (OR) Reference marsh 46.15775 -123.86157 3.3 0.70 ± 0.03 14.0 
South Clatsop Slough marsh Columbia (OR) Restored marsh 46.12910 -123.87931 1.7 0.73 ± 0.09 14.7 
Johns River polyhaline marsh Grays Harbor (WA) Reference marsh 46.90081 -123.99240 16.5 1.03 ± 0.01 13.6 

Johns River mesohaline marsh Grays Harbor (WA) Reference marsh 46.89158 -123.98729 7.2 1.32 ± 0.03 14.3 
Johns River south pasture Grays Harbor (WA) Wet pasture 46.89342 -123.98842 0.4 1.18 ± 0.06 14.3 
Johns River north pasture Grays Harbor (WA) Dry pasture 46.89867 -123.98821 0.3 0.98 ± 0.05 13.6 
Johns River oligohaline marsh Grays Harbor (WA) Reference marsh 46.88344 -123.96458 5.0 1.18 ± 0.06 14.6 
Johns River restored marsh Grays Harbor (WA) Restored marsh 46.90513 -123.99071 17.9 0.70 ± 0.10 13.6 
Johns River swamp Grays Harbor (WA) Tidal swamp 46.88292 -123.96576 3.9 1.15 ± 0.05 14.6 
Milltown Island oligohaline marsh Skagit (WA) Reference marsh 48.30145 -122.35995 1.3 0.80 ± 0.03 14.4 
Milltown Island restored marsh Skagit (WA) Restored marsh 48.31730 -122.34848 0.7 1.03 ± 0.04 15.0 
Milltown Island swamp Skagit (WA) Tidal swamp 48.31744 -122.34747 0.2 1.37 ± 0.05 15.0 
Fir Island marsh Skagit (WA) Reference marsh 48.33332 -122.41500 7.4 0.83 ± 0.03 14.4 
Fir Island restored marsh Skagit (WA) Restored marsh 48.33520 -122.41038 7.1 0.38 ± 0.05 14.4 
Padilla Bay agricultural field Padilla (WA) Dry pasture 48.46369 -122.46956 0.2 0.08 ± 0.04 14.8 
Padilla Bay wet pasture Padilla (WA) Wet pasture 48.45705 -122.46960 3.5 -0.46 ± 0.11 14.8 
Big Indian Slough marsh Padilla (WA) Reference marsh 48.45392 -122.47308 27.2 0.86 ± 0.02 14.8 
*Salinity from occasional spot measurements made with a hand-held meter. 
 

 
  

http://www.prism.oregonstate.edu/
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TABLE S2. Relative influence (%) of eight environmental factors on point measurements of CH4 and 
N2O fluxes in BRT models. 

 
 
 
 
 
 
 

 

 

 

 

 

 

TABLE S3. List of common and indicator plant species used in the NMDS analysis of species 
composition and CH4 and N2O fluxes. 

Species Common name Code 
Agrostis stolonifera Creeping bentgrass AgrSto 
Carex lyngbyei Lyngbye’s sedge CarLyn 
Carex obnupta Slough sedge CarObn 
Distichlis spicata Salt grass DisSpi 
Holcus lanatus Velvetgrass HolLan 
Jaumea carnosa Fleshy jaumea JauCar 
Juncus balticus Baltic rush JunBal 
Lysichiton americanum Skunk cabbage LysAme 
Bryophytes Mosses Moss 
Oenanthe sarmentosa Water parsley OenSar 
Phalaris arundinaceus Reed canarygrass PhaAru 
Potentilla anserina Pacific silverweed PotAns 
Sagittaria latifolia Wapato SagLat 
Salicornia pacifica Pickleweed SalPac 
Schoenoplectus spp. Tule Sch 
 
  

Factor CH4 model N2O model 

Elevation (z*) 21.1 15.9 
Salinity 18.3 12.2 
Water-table level 16.0 19.3 
Wetland type 12.1 21.8 
Soil temperature 9.4 7.3 
pH 8.4 8.3 
Air temperature 7.7 9.2 
Groundwater temperature 6.9 5.9 
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TABLE S4. Summary statistics of point measurements of CH4 fluxes by wetland type in PNW estuaries. 
Data summaries combine all sampling dates and sites. Positive values indicate a net flux to the 
atmosphere. 
 

 

 

 

TABLE S5. Modeled annual CH4 fluxes for wetland classes subset within salinity classes from the BRT 
model. Included are all sites from this study, and three additional reference marshes and six additional 
restored marshes in Tillamook Bay, OR reported by Schulz et al. (2023). 

 

  

CH4 flux (nmol m-2 min-1) 
Wetland class N Mean SE Median Max Min 
Reference swamp 202 266 92 0 16,004 -131 
Reference marsh 491 418 56 17 13,190 -99 
Restored marsh 399 1824 446 243 130,971 -130 
Wet pasture 102 8010 2505 7 197,977 -31 
Dry pasture 218 20 17 0 2,983 -285 

 Predicted CH4 flux (g CH4 m-2 yr-1) 
Wetland class N Mean SE Median Max Min 
Fresh + oligohaline (0-5 ppt) 
  Reference swamp 5 0.56 0.15 0.58 0.96 0.08 
  Reference marsh 5 9.01 6.41 2.88 34.61 1.15 
  Restored marsh 4 124.41 99.79 37.74 420.03 2.13 
  Wet pasture 2 55.03 51.43 55.03 106.46 3.60 
  Dry pasture 5 0.21 0.84 0.14 3.26 -1.39 
Mesohaline (5-18 ppt)             
   Reference marsh 8 2.25 0.64 1.64 6.15 0.75 
   Restored marsh 9 3.53 0.91 3.66 9.61 0.46 
   Wet pasture 1 1.70 NA 1.70 NA  NA 
Polyhaline (18-30 ppt)             
   Reference marsh 2 1.81 0.06 1.81 1.87 1.74 
   Restored marsh 2 7.53 0.84 7.53 8.37 6.69 
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TABLE S6. Summary of linear relationships between point measurements of N2O fluxes and 
individual environmental drivers in PNW tidal wetlands. 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
TABLE S7. Summary of point measurements of N2O fluxes by wetland type in Pacific Northwest 
estuaries.  
 

N2O fluxes (nmol m-2 min-1) 
Wetland class N Mean SD Median Max Min 
Reference swamp 78 1.3 5.4 0 20 -12 
Reference marsh 143 -0.36 9.3 0 49 -60 
Restored marsh 149 0.061 5.2 0 30 -28 
Wet pasture 24 1.3 6.4 0 31 -0 
Dry pasture 75 7.8 18 0 93 -18 
 
 
 

Environmental driver Model fits to mean fluxes 
Coefficient R2 P 

Salinity 0.003 -0.001 0.45 
Water -table level -0.075 0.030 >0.001 
Groundwater pH -0.062 0.004 0.10 
Groundwater temperature 0.002 -0.003 0.63 
Wetland elevation 0.065 -0.00009 0.33 
Soil temperature -0.010 -0.004 0.73 
Air temperature -0.008 -0.0004 0.37 
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FIG. S1. Scatter plots showing relationships between point measurements of log10 CH4 flux and select 
environmental drivers. Yellow points represent net emissions to the atmosphere, blue points represent net 
uptake, and red points represent no change. Gray envelopes around black regression lines represent 95% 
confidence intervals (with R2 and P statistics); red lines indicate 95% quantile regressions. 
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FIG S2. Relationship between plant species composition in two dimensional NMDS space and point 
measurements of N2O fluxes (nmol m-2 min-1) during summer sampling in the Coos and Columbia River 
estuaries. Individual chambers are indicated by points. The centroids of common and indicator species are 
given by six letter codes as in Table S3. Modeled N2O fluxes across the species compositional space are 
indicated by color contours.  
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